
Detecting Metamorphic Computer Viruses using
Supercompilation

Alexei Lisitsa and Matt Webster

Department of Computer Science

University of Liverpool, UK

TCV 2008

Nancy, France, May 2008

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
2

Structure of the Presentation

 Introduction
• Metamorphic computer viruses

• Supercompilation

 Interpreter of Intel 64
• Proving equivalence of programs

• Proving non-equivalence of programs

 Detection of metamorphic computer viruses

 Conclusion

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
3

Metamorphic Computer Viruses

 Metamorphic computer viruses
• Change their syntax

• Keep their behaviour (semantics) constant

• Are able to evade detection by signature scanning

 Examples: Zmorph, Bistro, Apparition, ...

 Undetectable metamorphic computer viruses exist!
• Chess & White (2000) - existence proof

• Filiol & Josse (2007) - constructive proof

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
4

Supercompilation

 Supercompilation = Supervised compilation
• Developed by Valentin Turchin (1970s)

• An approach to program transformation
• Improve efficiency of functional programs
• Has been used for verification (Lisitsa & Nemytykh, 2007)

 SCP4 (Nemytykh, Turchin)

• The most advanced supercompiler

• Works with the recursive functions algorithmic
language (Refal)

• Other supercompilers exist
• Java, Haskell

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
5

Supercompilation (2)

 How does supercompilation work?
• A program and its parameter are taken as input

• A graph of all possible states is constructed
• This may be an infinite graph
• This stage is called unfolding

• This tree is analysed
• Using generalisation, this tree is folded into another tree
• This second tree represents the configurations of the

parameterised program

• Infinite tree of states → Finite tree of states

 Therefore, supercompilation can be used...
• ... for program specialisation and optimisation

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
6

Intel 64 Interpreter

 Programmed in Refal

 Other instructions implemented so far
• jumps (JMP), conditionals (CMP), conditional jumps (JE)

mov {
(eax (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) =
(eax e.1)(ebx e.3)(ecx e.4)(Zflag e.5);

(eax (reg ebx))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) =
(eax e.2)(ebx e.2)(ecx e.3)(Zflag e.4);

...

}

mov eax, n

mov eax, ebx

 Instruction type Refal clause

...

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
7

Proving Program Equivalence

p2

Intel 64 interpreter output 2
Supercompiler

p1

Intel 64 interpreter output 1
Supercompiler

≡
?

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
8

Proving Program Equivalence (2)

 Supercompile each program

 Check the result of
supercompilation

 If they are the same
• ... then the programs are

equivalent

mov eax, 0
mov ebx, 1
cmp eax, ebx

mov eax, 1
mov ebx, 1
cmp eax, ebx
je 1
mov eax, 5
label 1:
mov eax, 0
cmp eax, ebx
je 1
mov eax, 0

jmp 1
label 1:
mov ebx, 1
mov eax, ebx
mov eax, ecx
mov eax, 0
jmp 2
mov eax, ecx
jmp 1
label 2:
cmp eax, ebx

pn

Intel 64 interpreter output n
Supercompiler

p1 p2 p3

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
9

Proving Program Equivalence (3)

 Result of supercompilation
mov eax, 0
mov ebx, 1
cmp eax, ebx

mov eax, 1
mov ebx, 1
cmp eax, ebx
je 1
mov eax, 5
label 1:
mov eax, 0
cmp eax, ebx
je 1
mov eax, 0

jmp 1
label 1:
mov ebx, 1
mov eax, ebx
mov eax, ecx
mov eax, 0
jmp 2
mov eax, ecx
jmp 1
label 2:
cmp eax, ebx

pn

Intel 64 interpreter output n
Supercompiler

p1 p2 p3

$ENTRY Go {
 (e.101) (e.102) (e.103) (e.104) =
 (eax 0) (ebx 1) (ecx e.103) (Zflag 0) ;
}

≡

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
10

Proving Program Non-Equivalence

 Supercompile each program

 Check the result of
supercompilation

 If they are not the same
• ... then the programs may

not be equivalent

mov eax, 0
mov ebx, 1
cmp eax, ebx

pn

Intel 64 interpreter output n
Supercompiler

p1 p2
mov eax, 1
mov ebx, 1
cmp eax, ebx
je 1
mov eax, 5
label 1:
mov eax, 0
cmp eax, ebx
je 1
mov eax, 1

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
11

Proving Program Non-Equivalence (2)

 Result of supercompilation
mov eax, 0
mov ebx, 1
cmp eax, ebx

pn

Intel 64 interpreter output n
Supercompiler

p1 p4
mov eax, 1
mov ebx, 1
cmp eax, ebx
je 1
mov eax, 5
label 1:
mov eax, 0
cmp eax, ebx
je 1
mov eax, 1

$ENTRY Go {
 (e.101) (e.102) (e.103) (e.104) =
 (eax 0) (ebx 1) (ecx e.103) (Zflag 0) ;
}

$ENTRY Go {
 (e.101) (e.102) (e.103) (e.104) =
 (eax 1) (ebx 1) (ecx e.103) (Zflag 0) ;
}

p1

p4

≡

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
12

Supercompilation for Detection

 Metamorphic computer virus variants must have
equivalent behaviour
• We can prove program equivalence using

supercompilation

• Therefore, we can use supercompilation for detection

 We assume that the suspect code and signature are
already prepared
• Then, we can use supercompilation to prove program

equivalence

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
13

Supercompilation for Detection

 Limitations
• The supercompilation algorithm cannot normalise all

equivalent programs to the same syntactic form
• Undecidable problem!

• False negatives are possible
• Some code is not analysable by supercompiler

 Good news
• False positives are unlikely, or even impossible

• This needs to be investigated formally
• Perhaps this is not so hard:

– Supercompilation is built upon formal foundations

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
14

Conclusion

 Supercompilation can be used to detect
metamorphic computer viruses

 Future work:
• Extend our interpreter for Intel 64

• Try out our technique on realistic metamorphic virus
code

• Discover the bounds of detection by supercompilation
• Which cases, in general, allow detection?
• Which cases don't?
• Is detection-by-supercompilation formally correct?

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation
15

End of Presentation

 Any questions?

