Detecting Metamorphic Computer Viruses using
Supercompilation

Alexei Lisitsa and Matt Webster
Department of Computer Science
University of Liverpool, UK

TCV 2008
Nancy, France, May 2008

Structure of the Presentation

Introduction
Metamorphic computer viruses
Supercompilation

Interpreter of Intel 64
Proving equivalence of programs
Proving non-equivalence of programs

Detection of metamorphic computer viruses

Conclusion

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Alex

Metamorphic Computer Viruses

Metamorphic computer viruses
Change their syntax
Keep their behaviour (semantics) constant
Are able to evade detection by signature scanning

Examples: Zmorph, Bistro, Apparition, ...

Undetectable metamorphic computer viruses exist!
Chess & White (2000) - existence proof
Filiol & Josse (2007) - constructive proof

ei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Supercompilation

Supercompilation = Supervised compilation
Developed by Valentin Turchin (1970s)

An approach to program transformation
Improve efficiency of functional programs
Has been used for verification (Lisitsa & Nemytykh, 2007)

SCP4 (Nemytykh, Turchin)
The most advanced supercompiler

Works with the recursive functions algorithmic
language (Refal)

Other supercompilers exist
Java, Haskell

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Supercompilation (2)

How does supercompilation work?
A program and its parameter are taken as input
A graph of all possible states is constructed
This may be an infinite graph
This stage is called unfolding
This tree is analysed
Using generalisation, this tree is folded into another tree

This second tree represents the configurations of the
parameterised program

Infinite tree of states — Finite tree of states

Therefore, supercompilation can be used...
... for program specialisation and optimisation

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Intel 64 Interpreter

Programmed in Refal

Instruction type | Refal clause

mov {

(eax (const e.l))(eax e.2)(ebx e.3)(ecx e.4)(zflag e.5) =
IOV C4aX, 7 (eax e.1)(ebx e.3)(ecx e.4)(zflag e.5);

((bx)) (.1) (ebx e.2)(.3) (zf1 4) =
IOV ebx (ggi et.ﬂgg(gbi e.%l)((e(cax e.g))((z%ag 2(.:2)? N

}

Other instructions implemented so far
jumps (JMP), conditionals (CMP), conditional jumps (JE)

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation 6

Proving Program Equivalence

p ;-
1 Supercompiler
Intel 64 interpreter output |
P,
Supercompiler
Intel 64 interpreter output 2

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

I -~

Proving Program

P

mov eax, 0
mov ebx, 1
cmp eax, ebx

P,

P,
jmp 1

label 1:

mov ebx, 1
mov eax, ebx
MoV eax, ecx
mov eax, 0
jmp 2

MoV eax, ecx
jmp 1

label 2:

cmp eax, ebx

P,

mov eax, 1
mov ebx, 1
cmp eax, ebx
je1

mov eax, 5
label 1:

mov eax, 0
cmp eax, ebx
je1

mov eax, 0

Intel 64 interpreter

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Equivalence (2)

Supercompile each program

Check the result of
supercompilation

If they are the same

... then the programs are
equivalent

&II- 'm M

Supercompiler

output n

Proving Program Equivalence (3)

P, P,

mov eax, 0 jmp 1

mov ebx, 1 label 1:

cmp eax, ebx mov ebx, 1
mov eax, ebx
MoV eax, ecx
mov eax, 0
jmp 2

MoV eax, ecx
jmp 1

label 2:

cmp eax, ebx

i

P,

P,

mov eax,
mov ebx,
cmp eax,

je1

mov eakx,

label 1:

mov eax,
cmp eax,

je1

moyV eakx,

Intel 64 interpreter

Result of supercompilation

$ENTRY Go {

(e.101) (e.102) (e.103) (e.104)
(eax 0) (ebx 1) (ecx e.103) (zflag 0)

Supercompiler

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

\\II- 'm i]

output n

Proving Program Non-Equivalence

P, P, Supercompile each program
mov eax, 0 mov eax, 1
e g oo | Check the result of
cmp eax, ebx cmp eax, ebx . .
je 1 supercompilation
mov eax, 5
iy If they are not the same
cmp eax, ebx
o ... then the_ programs may
mov eax, 1 not be eqU|Va|ent

P,

&II- 'm M

Supercompiler

Intel 64 interpreter output n

10

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Proving Program Non-Equivalence (2)

P, P, Result of supercompilation
mov eax, 0 mov eax, 1
mov ebx, 1 ¢ mov ebx, 1 $ENTRY Go {
cmp eax, ebx cmp eax, ebx pl (e.101) (e.102) (e.103) (e.104) =
je 1 (eax 0) (ebx 1) (ecx e.103) (zflag 0) ;
mov eax, 5 ¥
label 1:
mov eax, 0
cmp eax, ebx $ENTRY Go {
je 1 4 (e.101) (e.102) (e.103) (e.104) =
mov eax, 1 }(eax 1) (ebx 1) (ecx e.103) (zflag 0) ;

P,

\\II- 'm i]

Supercompiler

Intel 64 interpreter output n

11

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Supercompilation for Detection

Metamorphic computer virus variants must have
equivalent behaviour

We can prove program equivalence using
supercompilation

Therefore, we can use supercompilation for detection

We assume that the suspect code and signature are
already prepared

Then, we can use supercompilation to prove program
equivalence

12

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

Supercompilation for Detection

Limitations

The supercompilation algorithm cannot normalise all
equivalent programs to the same syntactic form

Undecidable problem!
False negatives are possible
Some code is not analysable by supercompiler

Good news

False positives are unlikely, or even impossible
This needs to be investigated formally

Perhaps this is not so hard:
- Supercompilation is built upon formal foundations

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

13

Conclusion

Supercompilation can be used to detect
metamorphic computer viruses

Future work:

Extend our interpreter for Intel 64

Try out our technique on realistic metamorphic virus
code

Discover the bounds of detection by supercompilation
Which cases, in general, allow detection?
Which cases don't?
Is detection-by-supercompilation formally correct?

14

Alexei Lisitsa and Matt Webster - Detecting Metamorphic Computer Viruses using Supercompilation

estions?

r Viruses using Supercompilation

